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Abstract
Polygons are described as almost-convex if their perimeter differs from the
perimeter of their minimum bounding rectangle by twice their ‘concavity
index’, m. Such polygons are called m-convex polygons and are characterized
by having up to m indentations in their perimeter. We first describe how we
conjectured the (isotropic) generating function for the case m = 2 using a
numerical procedure based on series expansions. We then proceed to prove
this result for the more general case of the full anisotropic generating function,
in which steps in the x and y directions are distinguished. In doing so, we
develop tools that would allow for the case m > 2 to be studied.

PACS numbers: 02.10.Ox, 05.50.+q, 05.70.Jk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The enumeration of self-avoiding polygons (SAPs) is a classical problem in statistical
mechanics and combinatorics. Exact results have thus far largely required the restriction
of SAPs to sub-classes that are in some way convex. In two dimensions, convexity means
that the perimeter is equal in length to the length of the minimum bounding rectangle (MBR).
Column-convexity means that any vertical cross-section may only intersect the polygon twice,
such that all columns are connected. Examples of convex and column-convex polygons can be
seen in figure 1. Convex polygons on two-dimensional lattices have been studied extensively
by Lin [1–3] and Bousquet-Mélou [4] and many exact results are known including the full
area—perimeter generating function. In 1997, Bousquet-Mélou and Guttmann [5] gave exact
results for convex polygons in three dimensions and a method for their enumeration in arbitrary
dimensions [5].

Enting et al [6] described polygons as almost-convex if their perimeter differs from the
perimeter of their minimum bounding rectangle by twice their ‘concavity index’, m. Such
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Figure 1. Examples of polygons that are in some way convex: (a) pyramid, (b) unimodal,
(c) convex and (d) column-convex.

Figure 2. Almost-convex polygons with the minimum bounding rectangle marked: (a) a 1-convex
polygon and (b) a 2-convex polygon.

polygons are called m-convex polygons and are characterized by having up to m indentations
in their perimeter. Examples of 1-convex and 2-convex polygons can be found in figure 2.
Enting et al derived the asymptotic behaviour of the number of m-convex polygons according
to their perimeter, n for m = o(

√
n). The results were confirmed for the case m = 0 (i.e.

convex polygons) by the known perimeter generating function. Subsequently, Lin [7] derived
the exact generating function for 1-convex polygons, using a ‘divide and conquer’ technique
introduced to the problem of convex animals (the interior of a convex SAP) by Klarner and
Rivest [8]. His result provided support for a conjecture in [6], giving the next term in the
asymptotic expansion for the number of polygons with perimeter n and concavity index m.

This is the second in a series of papers that look at the families of m-convex polygons.
In the first [9], we outlined the 50-year history of polygon enumeration on the square lattice
before re-deriving the generating functions for 1-convex polygons in an effort to generalize the
methodology and extend the results to osculating1 and neighbour-avoiding2 polygons.

Polygon models have long been used to model vesicles, with self-avoiding polygons
being the canonical model [10]. Associating a fugacity with the area of the polygon, a
phase transition occurs, so that at sufficiently high fugacity, the polygons change from the
self-avoiding class to the convex class. The introduction of m-convex polygons permits the
exploration of this phase transition in more detail. First, we find the (unsurprising) result
that m-convex polygons, for m finite, have the same fractal dimension (and hence are in the
same universality class) as the convex polygons, that is to say, the fractal dimension remains

1 Osculating polygons are those that may touch themselves, but not cross.
2 Neighbour-avoiding polygons are those that may not occupy a neighbouring lattice vertex without being connected
by an edge.
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unchanged at 2 (as compared to the value 4/3 for self-avoiding polygons). Second, the m-
convex model permits one to associate a fugacity with the concavity index m, and this would be
the polygon analogue of the stiffness in the self-avoiding walk models of polymer stretching.
It is however not our purpose to study this aspect of the problem here. Ideally, one would
like to predict how the form of the generating functions changes as the concavity index grows.
This would help us understand what happens in the scaling limit as the concavity index grows
in proportion to the perimeter.

In 2000, in an unpublished work, we conjectured, on the basis of long series expansions,
the (isotropic) generating function for the case m = 2. In this paper, we describe the numerical
procedure that led to this conjecture, and proceed to prove it. Indeed, we do so for the full
anisotropic generating function, in which steps in the x and y directions are distinguished. In
doing so, we develop tools that allow for the case m > 2 to be studied, though we do not do
so.

In section 3, we describe the series expansions that allowed us to conjecture the exact
result, and also, not incidentally, to provide checks on our rigorous results in the process of
proving our conjecture. In the following section, we introduce the methodology used to derive
our results, followed by examples of its application. We enumerate all the separate building
blocks required in the factorization of 2-convex polygons. The intermediate results, as well as
much of the detail, are omitted for the reasons of conciseness and clarity. These may be found
together with the equivalent staircase and unimodal results in [11, 12], where the presented
results first appeared.

2. Definitions and notation

In this section, we briefly summarize some definitions and notations used in the remainder of
the paper.

Directed walks (DWs). Square lattice walks that take either positive or negative steps in each
of the horizontal and vertical directions, but not both. For example, a walk that only steps up
and to the left is directed.

Generating functions. If the number of polygons (in a given class) with perimeter n is pn,
then the associated isotropic generating function is F(x) = ∑

n pnx
n. For polygons on the

square lattice the perimeter is always even, and we shall therefore study the half-perimeter
generating functions G(x) = ∑

n p2nx
n. In more generality, we distinguish between the

number of steps in the x and y directions and study the full anisotropic generation functions,
G(x, y) = ∑

m,n p2m,2nx
myn, where p2m,2n is the number of polygons with 2m horizontal

steps and 2n vertical steps.

The half-perimeter operator. We denote by E the operator that converts the perimeter
generating function to the half-perimeter generating function. Ex (respectively Ey) converts
only the direction counted by x (respectively y). (For a full definition, see [5].) We therefore
have

E[f (x, y)] = Ex[Ey[f (x, y)]], (1)

where

Ex[f (x, y)] = (f (
√

x, y) + f (−√
x, y))/2. (2)

If x or y (or a function of x or y) is asterisked, then the operator only takes the half-perimeter
of the non-asterisked generating function. That is,

Ex[f (x, x∗)] = Ex[f (x, y)]|y→x. (3)

3
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Figure 3. A convex polygon with marked vertices where the polygon meets the minimum bounding
rectangle.

For example, Ex[1/(1 − x − x∗)] = (1 − x)/(1 − 3x + x2) and, more generally,

Ex[f (x)g(x∗)] = g(x)Ex[f (x)], (4)

which extends naturally to the multivariate case. This allows the conversion from the perimeter
generating function to the half-perimeter generating function for different factors of a polygon
separately.

Minimum bounding rectangle (MBR). This is the smallest rectangle which encloses the
polygon. The polygons in figure 2 have a 6 × 6 MBR while the polygon in figure 3 has
a 12 × 8 MBR.

Sides. A convex polygon can be factored, as per figure 3, into four overlapping DWs: from l1
to t2, from t1 to r1 and so on. These are the maximal directed factors of the polygon, and we
refer to them as the sides of the polygon.

Arcs. An arc of a convex polygon is made up of a pair of adjacent sides. That is, a maximal
partially-directed factor of the polygon. Referring to figure 3, the top arc is the path from l1
to r1, passing through l2, t1, t2 and r2, and similarly for the bottom, left and right arcs.

Indents. An indent occurs in a side when the DW takes a step in the ‘wrong’ direction. We
refer to such walks as ‘almost-directed’. As an example, consider the part of the perimeter on
the top-right side, which, when the polygon is traversed anti-clockwise, only takes steps up
and to the left. An indent would occur if this walk were to take steps down (or to the right)
and then resume taking steps up and to the left. We shall distinguish between the indents in
the vertical and horizontal directions. In figure 2(a) the polygon has a single vertical indent,
while the polygon in figure 2(b) has both the vertical and horizontal indents. A walk taking
k′ steps in the ‘wrong’ direction followed by k′′ steps in the ‘correct’ direction produces an
indent k = min(k′, k′′) deep. Note that a vertical indent may contain a horizontal indent and
vice versa.

3. Exact solution from enumerations

Several years ago, two of us (IJ and AJG) found the exact generating function, C2(x), for
2-convex polygons numerically from exact enumerations for 2-convex polygons and some
simpler sub-classes. We found the solution by counting the number of 2-convex polygons
by using a program designed to enumerate SAPs [13]. This program counts the number of
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SAPs by perimeter having a given MBR. From these data, it is trivial to extract the 2-convex
data. However, with the computational resources available at the time, we could not get a
series long enough to find the generating function directly (we counted 2-convex polygons up
to the perimeter 110 yielding 48 nonzero terms). We therefore enumerated three sub-classes,
namely 2-convex polygons with one vertical indent 2-deep on the top arc, 2-convex polygons
with two vertical indents 1-deep on the top arc, and 2-convex polygons with vertical indents
1-deep on the top and bottom arcs. The programs used in these enumerations were simple
generalizations of the one used by Guttmann and Enting [14] to count convex polygons.
We then used the series for these sub-classes to find the respective generating functions
F2(x), FS(x) and FO(x). Finally, we looked at the ‘remainder’ of the full 2-convex case
FR(x) = C2(x) − 4F2(x) − 4FS(x) − 2FO(x), which counts the cases of 2-convex polygons
with vertical and horizontal indents 1-deep, and managed to find the generating function (and
hence the full 2-convex generating function).

We found the solution to the special cases via a judicious guess for the form of the
generating functions. From Lin [7], the isotropic generating function for 1-convex polygons
is

C1(x) = x3(−4 + 56x − 300x2 + 773x3 − 973x4 + 535x5 − 90x6 + 24x7)

(1 − x)(1 − 3x + x2)(1 − 4x)3

+
4x3(1 − 9x + 25x2 − 23x3 + 3x4)

(1 − x)(1 − 4x)5/2
. (5)

From this, it is reasonable to expect that the generating function for 2-convex polygons C2(x)

and the special cases F2(x) and so on are of a similar form, [A(x) + B(x)
√

1 − 4x]/D(x),
where A(x), B(x) and D(x) are polynomials. In particular, we expect the denominator D(x)

to be similar to the one in the above expression, but with larger exponents and possibly
involving further simple factors. If we can find D(x) then A(x) and B(x) can be found simply
from a formal series expansion using polynomials with unknown coefficients. By equating
the terms in this formal series with the known series for say F2(x), we find a set of linear
equations for the unknown polynomial coefficients.

Here we give some further details of how we found the generating function F2(x). We
calculated the number of convex polygons with an indent 2-deep on the top arc to perimeter
216. This gives us the first 100 nonzero terms in the half-perimeter generating function. Our
first task is to determine the denominator D(x). We did this by analysing the singularities of
F2(x) using differential approximants. Our analysis showed that the series has singularities
at x = 1/4 with exponents −3 and −5/2 (this confirms that at the dominant singularity we
have a square-root correction term), at x = 0.381 966 . . . (the first root of 1 − 3x + x2) with
exponents −3 and −1, at x = 1 with exponents −4.99(3) and −3.0(5), and at x = 2.618 . . .

(the second root of 1 − 3x + x2) with exponent −3. The conclusion is that in this case
D(x) = (1 − x)5(1 − 3x + x2)3(1 − 4x)3. By inserting this into the general form and
equating the terms in the formal expansion with those of F2(x) we found a solution with
the polynomials A(x) and B(x) of degrees 18 and 17, respectively, with B(x) containing the
factors (1 − x)2(1 − 3x + x2)2, the latter of these factors was indicated by the exponents found
at x = 0.381 966 . . . . The polynomials are

A(x) = −8x2 + 208x3 − 2428x4 + 16 856x5 − 77 742x6 + 25 2114x7

− 593 563x8 + 1032 521x9 − 1336 471x10 + 1284 072x11 − 904 540x12

+ 456 064x13 − 158 327x14 + 36 093x15 − 4955x16 + 126x17 + 88x18,

B(x) = (1 − x)2(1 − 3x + x2)2(8x2 − 128x3 + 844x4 − 2992x5

+ 6262x6 − 8014x7 + 6188x8 − 2602x9 + 470x10 − 12x11). (6)
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Similarly, we found the generating functions for the other three special cases FS(x), FO(x)

and FR(x). The only additional point worth noting is that the denominator in the case of FR(x)

contains the extra factor (1 − 2x). Collating these results, we find that

C2(x) = A2(x)

(1 − x)7(1 − 2x)(1 − 3x + x2)3(1 − 4x)4
+

B2(x)

(1 − x)3(1 − 4x)7/2
, (7)

where

A2(x) = −24x2 + 864x3 − 14 368x4 + 146 672x5 − 1030 216x6 + 5289 512x7

− 20 587 766x8 + 62 176 564x9 − 147 946 110x10 + 280 112 802x11

− 424 512 212x12 + 516 373 058x13 − 504 068 274x14 + 393 649 476x15

− 244 279 626x16 + 119 050 550x17 − 44 773 540x18 + 12 722 814x19

− 2660 520x20 + 378 184x21 − 22 560x22 − 3200x23 + 512x24,

B2(x) = −24x2 + 456x3 − 3592x4 + 152 64x5 − 38 200x6 + 57 792x7

− 52 832x8 + 28 872x9 − 8968x10 + 1248x11 + 128x12. (8)

In the following sections, we show how to prove this result for the general anisotropic
case.

4. Enumeration techniques

4.1. Convex polygon basics

Following from section 2, one may describe convex polygons as a series of four non-
intersecting DWs that make up the four sides of the polygon. (To see this, we refer to
figure 3.) If one of these sides has no steps in the interior of the MBR, this means that the
polygon touches one of the corners of the MBR. This sub-class of convex polygons is referred
to as directed-convex3 or unimodal4. We could therefore define this class of polygons as
having only three sides. Similarly, staircase polygons are formed of two DWs that start and
end at diagonally opposite corners of the MBR. Finally, pyramids and stack polygons also
have two sides formed by DWs, but these are adjacent sides, with a straight base or side edge.
(Stack polygons are simply pyramids on their sides.) Such classes of convex polygons were
depicted in figure 1.

For notational convenience, let us now define some well-known generating functions,
where x (respectively y) counts the horizontal (respectively vertical) steps. The generating
function for the pairs of intersecting DWs that begin and end at the same points (referred to as
staircase festoons) we denote as

Z =
∑
n,m

(
n + m

n

)2

xnym = 1/
√

�, (9)

where � = 1−2x −2y −2xy +x2 +y2. The staircase polygon generating function we denote
as

S = (1 − x − y −
√

�)/2. (10)

We note that the unimodal generating function is simply xyZ. Now, by defining

u = x + S and v = y + S, (11)

3 This name comes from the definition which says that all cells in the interior of the polygon can be connected with
the corner cell by a directed walk on the dual graph.
4 This name comes from the fact that there is only one mode in each direction, when we take the projection of the
walk in that direction.

6



J. Phys. A: Math. Theor. 41 (2008) 055001 W R G James et al

we can re-express all our almost-convex polygon generating functions as expressions with
terms that are simply the quotient of polynomial functions of u and v. This is achieved via the
transformation of variables

x = u(1 − v) and y = v(1 − u). (12)

For example, we have

� = (1 − u − v)2, Z = 1/(1 − u − v) and S = uv. (13)

4.2. Joining polygon factors

The Temperley method is central to the enumeration of partially convex polygons. The so-
called ‘functional-Temperley’ method allowed Bousquet-Mélou [4] to enumerate classes of
column-convex polygons. It differs from the Temperley method in that it can be used to
concatenate several large enumerable parts of the polygon, rather than individual columns. In
particular, the concatenated building blocks may be different types of polygons. A variation
[15] allowed for the enumeration of certain classes of animals, represented as heaps of dimers.
Rechnitzer [16] identified these methods as equivalent, the superiority of the one over the other
lying in its ease of use and appropriateness to the recurrence relation underlying the problem.

We call distinct enumerable parts of the polygons factors, due to our ability to factorize
the polygons into such parts by separating them at unique factorization points. In this paper,
we use factorization lines, which we define by extending the interior edge of the indentations
of almost-convex polygons into lines that bisect the lattice (see figure 8).

4.2.1. The Hadamard product. The approach that has been used repeatedly by Lin [1–3]
in the enumeration of convex polygons is to build them up vertically, block by block. The
functional-Temperley method can therefore be used in this case. One tool which can be used
to ‘join’ polygonal blocks together is the Hadamard product. (For a full description, see [16].)
This is particularly useful when a few blocks need to be joined in a non-recurring manner. We
use the Hadamard product in calculating most of the generating functions in this paper.

Consider two series, f (t) = ∑
n fnt

n and g(t) = ∑
n gnt

n, denote by �t the Hadamard
product with respect to t, then

f (t) �t g(t) =
∑

n

fngnt
n. (14)

The restricted Hadamard product with respect to t is defined as

f (t) �t g(t)|t=1 =
∑

n

fngn = 1

2π i

∮
f (t)g(1/t)

dt

t
. (15)

For notational convenience, we will refer to this as a Hadamard join (over t), or simply a
‘join’.

Hence, the Hadamard product over a given variable, say s, is the operator which ‘joins’
generating functions by matching the perimeters enumerated by s. This is equivalent to joining
the polygons by matching the edges of the respective polygons, such that they overlap, and
then removing the overlapping edges, forming a single, larger polygon. We can also match the
edge column, rather than the edge perimeter. For example, if we enumerate staircase and stack
polygons according to their right perimeter, total perimeter and area, we can join them, making
the neighbouring columns overlap. Making the transformation s �→ s/yq and dividing by
x, so that the overlapping column is not double-weighted, we form unimodal polygons, as in
figure 4.

7
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x y q5 5 20
s4

x y q3 4 7

x y q57 23x−1y−4q−4

Figure 4. An example of the action of the Hadamard product.

4.2.2. Hadamard arithmetic. It is straightforward to show the following properties of
restricted Hadamard products [16].

It is distributive:

f (t) �t (g(t) + h(t)) = f (t) �t g(t) + f (t) �t h(t). (16)

It follows the product rule:

∂

∂s
(f (s, t) �t g(s, t)) =

(
∂

∂s
f (s, t)

)
�t g(s, t). + f (s, t) �t

(
∂

∂s
g(s, t)

)
. (17)

It evaluates simply at poles:

f (t) �t

1

1 − αt
= f (α), (18)

f (t) �t

t kk!

(1 − αt)k+1
=

(
∂

∂t

)k

f (t)

∣∣∣∣
t=α

. (19)

We showed in [9] how u and v can be used to simply express the generating functions
for staircase polygons with fixed steps in the corner. The generating function uavb counts
staircase polygons that start with a horizontal steps and end with b vertical ones (or vice versa).
This allows us to enumerate parts of polygons with specific sequences of steps along the joins.
Moreover, because we can express the generating functions for all factors of almost-convex
polygons as the quotient of polynomial expressions of u and v, evaluating the joins generally
becomes straightforward by separating the poles in the denominator using partial fractions.

4.3. Distinguishing steps to insert indents

One way of inserting indents in convex polygons is to distinguish a step for the location of
the indent and then make the appropriate adjustment to the generating function. We therefore
factorize the polygon at the distinguished step by extending a line perpendicular to it. When
an indent is joined to a staircase factor (as per figure 5), the adjustment required for the indent
is independent of its location.

We distinguish between the walk forming the indent and the rest of that side of the
polygon. In the case of a vertical indent (as depicted in the figure), the indent starts with the
vertical step at the same height as the distinguished step preceding the non-directed vertical
step(s), and includes all steps up to (but not including) the distinguished step. We refer to it
as the indent factor. We note that a single, m-deep indent factor is therefore in the form of a
pyramid.

8
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Figure 5. The form of a 1-staircase polygon, which may be formed by inserting an indent factor
next to a distinguished step.

As mentioned above, the generating function for staircase polygons with a (respectively
b) fixed horizontal (respectively vertical) steps in one corner is uavb. As each extra fixed step
along the factorization line contributes u to the generating function, the contribution of the
indent factor to these otherwise staircase polygons (which are called 1-staircase polygons) is
therefore u2/(1 − u)2. We therefore define the 1-deep indent generating function to be

I = u2

(1 − u)2
, with Ī = I(y, x) = v2

(1 − v)2
, (20)

and, for m > 1, the m-deep indent generating function is

Im ≡ Im(x, y) = u2

(1 − u)2m
= v2 S2m−2

y2m
, with Īm = Im(y, x). (21)

The height-independent insertion of indents can be extended to unimodal polygons.
Whereas staircase polygons can be separated into two halves—one with only positive steps, the
other with only negative steps—unimodal polygons are defined by the fact that their positive
horizontal steps occur before the negative ones, and similarly for the vertical steps. This
means that if the unimodal polygon intersects itself, a staircase factor is formed. And so, if
we factor a unimodal polygon along the base of a vertical indent on the left arc (as per the
staircase factorization shown in figure 5), the indent must be a part of a staircase factor to the
bottom-left and is therefore enumerated by Im. This leads us to the following proposition.

Proposition 4.1. The generating function for bimodal m-staircase (respectively m-unimodal)
polygons that are rooted in the bottom-left corner and whose single m-deep indent is vertical
and on the left arc is Imy2 ∂

∂y
(Q/y), where Q = S/y (respectively xZ).

This argument can be extended to enumerate unimodal polygons with two distinct indents
on the same side. To construct such polygons, one may insert both indents at a distinguished
height, and then mark a second height where we would like the second indent. We can therefore
try to form the desired polygons by translating the closest of the two indents to the second
of the distinguished heights. In [12], we point out that if the second indent lies below the
first, this downward translation may cause the polygon to intersect. Furthermore, in the other
case, an upward translation will mean that the bottom arc of the polygon will not go above the
original position of the translated indent. We show, however, that the missing polygons in one
case are equal in number to the extra polygons in the other case. This intriguing fact leads to
the following proposition.

9
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Figure 6. The form of 2-staircase polygons with both indents on their top-left side. (a) The form
of 2-staircase polygons with both indents on their top-left side. (b) The two possible ways of
inserting two indents.

Proposition 4.2. The generating function for 2-staircase (respectively 2-unimodal) polygons
that are rooted in the bottom-left corner and with distinct vertical indents on the left arc is

y3 ∂

∂y

(
I2 ∂

∂y
(Q/y)

) /
2, where Q = S/y (respectively xZ). (22)

4.4. Folding walks and wrapping polygons

4.4.1. Folding walks. An important notion in deriving exact generating functions for almost-
convex polygons is that of the so-called ‘folding’ of DWs. This notion is simply a way of
describing the combinatorial objects enumerated by the enumerative methods developed in [5].
These methods use the half-perimeter operator defined in section 2 to enumerate intersecting
convex polygons, and then remove those that intersect. We are therefore interested in the
enumeration of these intersecting polygons.

We begin by considering DWs, which are enumerated by 1/(1 − x − y), where x
(respectively y) counts the horizontal (respectively vertical) steps. If we then only consider
those with an even number of horizontal steps, we can find either a vertex or a series of vertical
steps that have half of these horizontal steps to the left, and half to the right. We can then fold
the walk vertically at this point by reflecting all the steps to the left over to the right. (The axis
of reflection is the vertical line that goes through the half-way point.) This walk is now half
as wide as it was, and its generating function is therefore

Ex

[
1

1 − x − y

]
. (23)

By removing those that have a horizontal step after the fold, we obtain self-avoiding walks,
which is an example of standard inclusion–exclusion techniques,

Ex

[
1 − x

1 − x − y

]
. (24)

Adding a width-one column to its side then gives us stack polygons (that is, sideways pyramids).
Now, folding vertically as well allows us to make the walk end at its origin, forming a

polygon. Forcing the polygon to start with a horizontal step and end with a vertical one (or
vice versa) then gives the following generating function for (possibly intersecting) unimodal
polygons:

E

[
xy(1 − x)(1 − y)

1 − x − y

]
. (25)
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Figure 7. The action of wrapping when the top factor is narrower than the length of the join, d.
(a) The form of the folded top factor. (b) The form of the wrapped polygon.

Finally, by distinguishing a horizontal step after which we fold (rather than choosing the
half-way point) forces a second fold on the other side of the walk in order to make its width
equal to half its original width. This means that the resulting polygon does not necessarily
visit any corner of the MBR, and we are left with (possibly intersecting) convex polygons.
The resulting generating function is

E

[
xy(1 − x)2(1 − y)2

(1 − x − y)2

]
, (26)

which is the d = 2 case of Bousquet-Mélou and Guttmann’s multi-dimensional result
(lemma 2.2, [5]).

Folding walks is therefore a simple way of enumerating intersecting polygons (or factors
of polygons, for that matter) with convexity requirements. This will allow us, in the
following section, to enumerate 1-convex polygons in a direct, closed-form expression that is
combinatorially interpretable. This provides us with an example of the methods required for
the enumeration of the various sub-classes of 2-convex polygons. However, first we need to
be able to fold one factor within a polygon (that is joined directly to another factor) without
our methods breaking down. And for this we need ‘wrapping’ as follows.

4.4.2. Wrapping polygons. ‘Wrapping’ refers to folding a single factor of a polygon that has
been constructed by joining multiple factors together. As an example, consider 1-unimodal
polygons formed by joining a staircase bottom factor to a unimodal top factor and an indent
factor. The total height of the polygon is given by the sum of the heights of the top and bottom
factors. The total width of the polygon is measured by adding the width of the top factor to
the width of the bottom factor that lies to the left of the top factor. In the 1-unimodal case, the
generating function for the bottom factor is therefore Iv(u/x)d , where d is the length of the
join.

In this case, the unimodal factor is enumerated as a folded walk, as per the previous
section. However, we will sometimes fold the fixed steps of the polygon, leaving a chain of
double-bonds of fixed steps around the fold, as shown in figure 7(a). If the join is of length d,
then there are d fixed horizontal steps in each of the top and bottom factors that are identified,
but are then removed and do not form part of the polygon. And so, if there are fewer than
d horizontal steps in the rest of the top unimodal factor, as depicted in the figure, then the
contribution to the polygon is a pyramid of width 2n − d, with a weight of xn. Importantly,
although those fixed steps are not part of the polygon itself, they do contribute to the weight.
This is because the width of the polygon here is given by the top factor. When the E operator

11
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Figure 8. Generalizing Lin’s factorization to enumerate 1-convex polygons. (a) The inclusion
case. (b) When the indent extends to the left.

folds the top factor, in order to keep the bottom factor joined to the top factor, it must therefore
also be folded. We say that we have wrapped the bottom factor. We can therefore see that the
fixed steps along the join that were folded to form double-bonds and whose width is counted
in the resulting generating function is the projection of the wrapped part of the bottom factor.
This is shown in figure 7(b). We therefore need not make any adjustment, as the width is
enumerated correctly. Finally, the required ‘1-unimodal’ polygons are obtained by translating
the fixed vertical step below the join to the right edge of the polygon (as shown in red in
figure 7(b)) to ensure that the polygons are self-avoiding.

In conclusion, without needing to make any extra adjustment, wrapping allows us to
enumerate almost-unimodal polygons with a single indent in the left side by only enumerating
staircase polygons joined to unimodal ones. This is because the wrapping action also creates
polygons that are composed of a unimodal bottom factor joined to a pyramid top factor.

5. The 1-convex generating function

As an example of the above wrapping technique, we derive the generating function of 1-convex
polygons with their indent on the top arc. It provides a much simpler derivation of the result
than the method used in [9].

We begin by adopting Lin’s factorization of 1-convex polygons (see [7]) by extending a
line along the base of the indent, as in figure 8. We enumerate these polygons by following the
inclusion–exclusion argument of [5], enumerating all the required polygons, including those
that intersect, and then excluding those that intersect. The factorization gives top and bottom
unimodal factors that can be enumerated as walks that may be wrapped such that the bottom
factor extends furthest to the right.

The generating function of polygons of the form shown in part (a) of the figure can be
expressed as

∑
n�1

1

xn

(
E

[
xn+1y2

1 − x − y

(
1 +

y

1 − x

)]
− unvE

[
xy

1 − x − y

])

·
(

E

[
xn+1y2

1 − x − y

(
x2/(1 − y)

1 − x2/(1 − y)

)2 (
x

1 − y

)n−1]

− un+2v

(1 − u)2
E

[
xy

1 − x − y

])
− 2x S3Z3

(
1

1 − x
+ uZ

) (
1 +

v

1 − u

)
. (27)
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The length of the join is taken to be n. The term in the first line is the generating function
for the unimodal top factor, with a base at least of length n. The term xn+1y2/(1 − x − y)

enumerates DWs that are folded by the E operator to form the unimodal factor. We note that
due to the vertical symmetry, when this top factor is of height one, some polygons may be
double-counted, giving the term (1 + y/(1 − x)), the y/(1 − x) forcing the top factor in the
symmetric case to be of height at least two. The second line enumerates the bottom factor and
the indent. Again, using an inclusion–exclusion approach, we fold a walk to form the unimodal
polygon and then exclude the intersecting cases. As the width along the join is already counted
in the top factor, we adjust for the length of the join with the term (x/(1 − y))n−1. We then
fix the horizontal steps of the indent factor, which cannot be folded, giving the term(

x2/(1 − y)

1 − x2/(1 − y)

)2

,

rather than the expected x2/(1 − x)2, which can be folded. We recognize the last term in both
of the first two lines as the exclusion cases when the polygons intersect in the top-right or
bottom-left corner. The last term comes from the possibility of intersection in the bottom-right
corner.

From the wrapping principle outlined in the previous section, when the top factor has the
form of a pyramid, the fixed steps along the join may have been folded. This then wraps the
bottom factor, making it convex in shape, such that it extends further to the right than the top
factor.

We finish by expanding the brackets, so that we may evaluate the sums and write the
expression in a closed form. However, the indent may extend further to the left than the
bottom factor, as shown in part (b) of the figure, and therefore requires an adjustment term.
And so, moving all terms incorporating n into the E operators and expanding the brackets
in the summand, we can then complete the summation. This then allows us to add the term
x∗/(1 − x∗) that enumerates the indent for the required adjustment to give the following
expression for the generating function:

E

[
x(1 − x)y∗

(1 − x)2 − y∗

(
1 +

y∗

(1 − x)2

) (
x∗

1 − x∗ − y

)2 (
y2(1 − y)2

(1 − y)2 − x∗ +
x∗y2

1 − x∗

)
x

1 − x − y

]

− 4xyv

�
E

[ (
x∗y

1 − x∗ − y

)2 (
(1 − y)2

(1 − y)2 − x∗ +
x∗

1 − x∗

)
u∗

1 − u∗ − y

]

− 2xyu2v

(1 − u)2�
E

[
x(1 − x)y∗

(1 − x)2 − y∗

(
1 +

y∗

(1 − x)2

)
x

1 − x − v∗

]

+ 2v SZ

(
2x S
�

)2

− 2x S3Z3

(
1

1 − x
+ uZ

) (
1 +

v

1 − u

)
. (28)

6. Derivation of the 2-convex generating function

We generalize Lin’s factorization of 1-convex polygons by extending a factorization line along
the base of each indent. This allows each case to be enumerated by joining factors along these
lines. When the indents are in the same direction, there are three main factors plus two indents.
When the indents are in different directions, we divide the lattice into four quadrants. We say
the quadrant in the top-right is the first, and order the remaining quadrants in an anti-clockwise
fashion.

To break-up the problem into enumerable parts, similar to Lin, we adopt a ‘divide and
conquer’ approach and classify sub-classes of 2-convex polygons according to the relative
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direction and position of the indents (that is, which side they lie on). We obtain the generating
functions of symmetric classes by reflection and rotation. Without loss of generality we
assume that one indent is vertical and on the top-left side. This leaves us with one of the nine
cases: first, the indent can have depth two, second, when there are two indents each of depth
one, we have to consider eight combinations of the direction and location of the second indent.
However, the two cases where the second indent is in a different direction and on one of the
adjacent sides are equivalent after a rotation. We are therefore left with eight distinct cases to
evaluate.

There is a possible ambiguity when an indent factor is adjacent to the MBR. For example,
in the case where there is a vertical indent on the base of the polygon as well as on the
top-left side, the indent on the base may be considered as on either side of the bottom arc. We
arbitrarily chose that such cases be enumerated by the class whose indented sides are closest
together. This example is therefore enumerated by the case where the indents are on adjacent
sides, and not on opposite sides of the polygon. We now briefly consider these eight cases in
turn.

6.1. Case 1: a single 2-deep indent

Almost-convex polygons with a single indent we refer to as ‘bimodal’ due to the two modes
(in the same sense as ‘unimodal’) adjacent to the indent. In section 5 we enumerated 1-convex
polygons, which are the simplest case of bimodal polygons. Bimodal 2-convex polygons,
which have a single 2-deep indent, can be enumerated mutatis mutandis. For the generating
function, see [12, section 2].

6.2. Case 2: indents in the same direction on the same side

When the indents are on the same side (on the top-left), we join unimodal top and bottom
factors to a staircase factor in the middle. This implies that the top factor extends furthest to the
right. (See figure 9.) This creates three blocks separated by two factorization lines. Each pair
of blocks are joined by matching the top and base edges along the factorization line dividing
them. Since there is an indent factor in the top block, horizontal steps must be added on either
side of the indent so their perimeters match. In this way the length of the join, counted by the
parameter s, is equal to the top perimeter of the middle staircase factor. Whenever the join is
defined in this way, in order to enumerate the indent, a term s2/(1 − s)3 is included on one
side of the Hadamard product in the expression for the generating function. Indeed, this term
appears in the majority of expressions involving 2-convex polygons. Fortunately, such joins
can be re-expressed in terms of the first three moments of the generating function with the
indent omitted.

In order to match lengths correctly along the bottom join (defined as the length of the base
of the middle staircase factor and enumerated by the parameter t), we append horizontal steps
to the bottom factor. In this example, the length of both joins are defined as the length of the
middle factor along the factorization lines, as indicated by the shaded regions in figure 9. The
choice for the definition of the join is determined by the generating functions of the top and
bottom factors, which are simple rational expressions in terms of s and t. This is generally
simpler than trying to adjust the middle factor to match the other factors.

In using the standard inclusion–exclusion techniques for enumerating the top and bottom
unimodal factors, wrapping ensures that the cases where the middle or bottom factor extends
furthest to the right are included. This means that the bottom factor may intersect (forming
a unimodal loop) to the bottom-right. This is a powerful example of the robustness of the
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Figure 9. The form of a 2-convex polygon with both indents on the same side.

wrapping methodology—we fold the top factor, wrapping not just the middle factor, but the
bottom factor as well, such that it can be the one to extend furthest to the right.

We now complete the enumeration to serve as an example for the following cases. We
only give some details here, as there are dozens of very complicated formulae in all, each
using the same principles in their derivation. We outline each of the remaining cases to the
minimum extent that would be necessary to reproduce the results. We break the problem into
two parts: when the indents are at the same height and when they are not. The latter case is
enumerated by the following expression, and the former follows mutatis mutandis.(

E

[
sxy3

(x − s)(1 − x)(1 − x − y)

]
− 2xy

�
· sv

1 − s − v

)
s2

(1 − s)3
�s S̄(s, t)

�t

1

1 − t
E

[
ty2

1 − t − y

(
(1 − y)2

(1 − y)2 − x∗ +
x∗

1 − x∗

) (
x∗

1 − x∗ − y

)2 ]

− 2xy

�

((
y4

2

∂

∂y
I2 ∂

∂y

1

y2

(
xyZ − xy

1 − x

))
+ v2 SZ2I2

(
SZ +

v

1 − x

))
,

(29)

where S̄ is the generating function of staircase polygons by base and top perimeter.
The expression to the left of the join in the first line enumerates the top factor, with the

indent enumerated by s2/(1 − s)3. The first term in the E operator enumerates the (possibly
intersecting) unimodal folded walks, with the term s/(x − s) counting the fixed steps along
the join (weighted by xs, but divided by x2 to adjust for the width already enumerated by the
middle factor). The term y/(1 − x) ensures that it is at least of height one. The inclusion–
exclusion principle then lends us to exclude the intersecting case enumerated in the second
term. The second line enumerates the bottom factor, obtained by folding a stack polygon (a
reflection in the horizontal axis). This ensures that the indent is not wrapped. The first term
is the part of the stack polygon under the join. The last term is the part under the indents.
The second term enumerates the part of the polygon that extends to the left, including the
possibility that the bottom factor is a pyramid and that the indent factor extends furthest to the
left. Finally, the terms in the last line enumerate the exclusion cases. The first term counts
the polygons that intersect in the bottom-left corner. The 2-unimodal factor is enumerated by
distinguishing the heights where the indents are placed, thus explaining the derivatives. The
center term of the derivative is the generating function for unimodal polygons of height at
least two. The last term counts polygons intersecting in the bottom-right corner. This term is

15



J. Phys. A: Math. Theor. 41 (2008) 055001 W R G James et al

Figure 10. The form of 2-convex polygons with two vertical indents on adjacent sides of the top
arc. (a) The left-side indent is above the corner indent. (b) The left indent is below the corner
indent. (c) Both indents are on the same side.

obtained by summing the generating functions for each possible configuration of the indents,
using the known generating function for staircase polygons with fixed steps in the corner.

6.3. Case 3: indents in the same direction on adjacent sides of the same arc

In this case, the top factor must be a pyramid. We break the enumeration into two parts
depending on whether both indents are at the same height or at different heights. For the latter
case, illustrated in figure 10, we assume that the top-left indent is higher than the top-right
one. The symmetrical case can be obtained by reflection.

In part (c) of the figure, we reproduce the situation from case 2 (the indents are on the same
side) where the top factor is a pyramid (such that the middle factor is wrapped). Reflecting
the indented top pyramid factor vertically, we recover the form of the polygons shown in part
(a). Alternatively, drawing the factorization line under the top indent, flipping both the indent
and the top factor gives the polygons shown in part (b).

We can therefore use the expression for the generating function for case 2, with a slight
modification to the first term, which becomes

E

[
sy2

1 − x − y

(
x

x − s
− 1 − y

1 − y − s

)]
+

P(s, y)

1 − x
, (30)

where P(x, y) is the pyramid generating function. The pyramid term comes from the
possibility that the indent extends furthest to the right. The last term in the E operator excludes
those cases from case 2 that were not wrapped and therefore did not have the pyramid top
factor now required.

6.4. Case 4: indents in the same direction on opposite sides

We divide this case into three parts according to whether the top-left indent is above, next to
or below the bottom-right indent (see figure 11). When the top indent is above the bottom
one, and either the top or bottom factor is of height one, the indents can be considered to
be on adjacent sides, and we do not include them in this case. Therefore, all of the above
calculations must be done for the top and bottom factors of height at least two.

When the top indent is below the other (see part (a) of the figure), the enumeration does
not require wrapping and has no complications; it can be obtained by simply joining the three
appropriate factors together. When the indents are next to one another (see part (b) of the
figure), the enumeration is even simpler. However, when the indents are level the top indent
may be either to the left or the right of the bottom-right indent. The latter case means that the
indents interweave (see part (c) of the figure).
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Figure 11. The form of 2-convex polygons with indents on opposite sides. (a) The top indent is
below the bottom indent. (b) The top indent is level with the bottom indent. (c) The level indents
are inter-weaved. (d) The top indent is above the bottom indent. (e) The middle factor is further
to the right than the top factor. (f) The indent factor is farthest to the right.

Now consider the situation where the top-left indent is above the other one. When
wrapping, in order to keep the polygon self-avoiding, we usually translate the fixed vertical
step from below the join to the fold (see figure 7(b)). However, when wrapping the bottom
factor as well we need to make an adjustment to the length of the bottom join (see part (e)
of the figure). Moreover, when the middle factor is a pyramid, it is possible that the indent
extends furthest to the right (see part (f) of the figure).

This case presents a complication not met earlier in our enumeration. Proceeding as
usual would involve simultaneously joining an indent and unimodal factor to both the top and
bottom of a staircase middle factor. When the middle factor extends furthest either to the left
or right wrapping generates these polygons. However, this requires wrapping both sides of
the middle staircase factor independently, which is not possible as the calculations diverge.
(For further discussion, we refer to [12, section 7.2.1].) We can therefore only use wrapping
on one side, and must break-up the calculation of the bottom factor into two parts depending
on whether it is unimodal or pyramid.

Finally, note that when the middle factor extends furthest to both the left and right, it is
convex in form. This requires the enumeration of convex polygons according to both base
and topmost horizontal segment. This can be achieved by adopting a ‘divide and conquer’
approach and joining pyramid factors to unimodal ones, or by solving recurrence relations.
(The generating function by perimeter and area, solved by the aforesaid recurrence relations,
already exists in the literature [4].)

6.5. Case 5: indents in the same direction on adjacent sides of opposite arcs

This case is similar to the previous one, when the bottom factor was a pyramid. Reflecting
the bottom factor and indent the correct form is produced as shown in figure 12. We can
proceed by joining a unimodal top factor to a unimodal middle factor, which in turn is joined
to a pyramid bottom factor. Wrapping again generates the cases where the bottom factor
extends furthest to the right. The enumeration of the different parts of this case follows the
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Figure 12. The form of 2-convex polygons with indents in the same direction on adjacent sides of
opposite arcs.

Figure 13. The form of 2-convex polygons with indents on the same side in different directions.
(a) The indents form a concave region in the corner. (b) The indents form a convex region in the
corner.

same approach as the previous case, except that the top and bottom factors may be of height
one. Also, the interwoven case is somewhat different, as the top and bottom factors are joined
directly.

In defining these eight cases we have assumed that the top indent is on the top-left side.
When multiplying by two to obtain the generating function for the symmetric case (where
the top indent is on the top-right side), we double-count the polygons whose top and bottom
indents are adjacent to the MBR (i.e. they form the topmost segment and the base). We must
therefore adjust for this case when adding up the generating functions at the end.

6.6. Case 6: indents in different directions on the same side

When the indents are in different directions and on the same side they form either a locally
convex or concave region, depending on their order. This is shown in figure 13.

First consider the locally concave case. Aside from the walk between the two indents,
the polygon can either enter the first or the third quadrant, but not both. If the polygon does
not enter the third quadrant then it has only three factors: two unimodal ones joined to the
staircase factor with the indents. When it passes through the third quadrant, the indents and
the connecting walk of the first quadrant are joined to unimodal factors in the second and
fourth quadrants. These are in turn joined by a directed walk in the third quadrant. Making
the expressions for the second and fourth quadrants factor into two parts, one independent of
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Figure 14. The form of 2-convex polygons with indents in different directions on adjacent sides.
(a) The top indent is above the one in the corner. (b) The left indent is next to the vertical one. (c)
The left indent is below the other. (d) The indent factor is adjacent to the vertical indent. (e) The
polygon does not enter the third quadrant.

the horizontal join, the other independent of the vertical join, allows the calculation of the
generating function. This is a good example of how wrapping works in both directions to
generate all the required polygons.

When the indents form a convex region, the polygon does not enter the first quadrant,
except in the case where the indents intersect and there are two steps in the first quadrant (as
shown in the second diagram in part (b) of the figure). The two cases are evaluated separately,
but the second is a simple version of the first. A unimodal factor and an indent in each of
the second and fourth quadrants are joined to a staircase factor in the third quadrant. The
evaluation is straightforward and wrapping gives the remaining polygons.

6.7. Case 7: indents in different directions on adjacent sides

We enumerate this case by breaking it up into parts classified by the relative height of the
indents. We say that the indents are next to each other if the holes formed overlap in height.
If the vertical projection of the humps formed by the indent overlap, we say that they are
adjacent. And so, the horizontal indent is either ‘above’, ‘next to’, ‘adjacent to’ or ‘below’ the
vertical indent (see figure 14). The cases where the polygon extends furthest to the left in the
third quadrant are all evaluated using the usual inclusion–exclusion and wrapping arguments.

When the horizontal indent is above the vertical one, the polygon may extend furthest
to the left in the second quadrant (as shown in part (e) of the figure). We need to enumerate
1-unimodal polygons whose indent is in the corner according to their base. This can be done
by joining an almost-pyramid polygon to a unimodal one. These are then joined to the bottom

19



J. Phys. A: Math. Theor. 41 (2008) 055001 W R G James et al

Figure 15. The form of 2-convex polygons with indents in different directions on adjacent sides.
(a) The top indent is above the one in the corner. (b) The left indent is next to the vertical one. (c)
The indent factor is adjacent to the vertical indent. (d) The left indent is below the other. (e) The
polygon does not enter the third quadrant.

factor together with an indent factor, noting that the indent may extend further to the right than
the bottom factor.

6.8. Case 8: indents in different directions on opposite sides

The final case is enumerated in a similar fashion to the previous case. The sub-classes defined
by the relative heights of the indents are shown in figure 15. The indents need not lie along
the MBR and thus the factors in the same quadrant as an indent must be of height or width at
least two.

There is, however, one special case to consider, depicted in part (e) of the figure, namely
when the polygon does not enter the third quadrant. This is an interesting case because the
horizontal and vertical joins (over s and t, respectively) must be done simultaneously. We
cannot proceed in the usual way and are forced to re-evaluate our approach and come up with
a new way to evaluate such constructions.

We solve this problem by generating the factor in the first quadrant as a staircase factor and
wrapping it along the factorization lines to form a convex factor. This is achieved by adding
double-bonds joined to the staircase factor next to the indent factors, so that it wraps back
along the double bonds, forming a convex polygon. The length of the horizontal (vertical) join
is counted by s(t). Each horizontal double-bond has two steps, contributing s2 to the weight
of the join, as well as a weight of 1/x for the fact that it wraps the staircase back, reducing
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its width by one. This means that the expression for the bottom factor in the join includes the
term s2/(x − s2).

Other expressions including s2 rather than just s have been evaluated preciously by
simplifying the other side of the join and re-expressing it in terms of derivatives. Now what is
on the other side of the join is the staircase factor, which cannot be simplified as it has to be
joined to both the bottom and left factors at the same time. We are therefore forced to simplify
the terms including s2 or t2. However, since s2/(x − s2) = Ex[s/(x − s)], the expression
inside the E operator can be changed into a form we can evaluate simply.

The remaining cases are obtained using the above methodology by wrapping a directed
walk in the first quadrant. When the top indent is above the bottom one, the unimodal factor
in the third quadrant must be of width and height at least two.

6.9. The 2-convex generating function

In the above derivations, the direction and position of one of the indents was chosen arbitrarily,
such that the direction and position of the other determined which sub-class the polygon
belongs to. Therefore, when the two indents are in different directions, the cardinality of
the set of possible combinations of the direction and location for the fixed indent is four.
When the indents are in the same direction, both directions are enumerated by the generating
functions. If the indents are on the same edge, the cardinality is two. If they are opposite, it
is one. We therefore obtain the generating function for 2-convex polygons by summing the
results, multiplying each term by the cardinality of the class it counts. This gives the following
generating function for 2-convex polygons (available in a Maple/Mathematica friendly format
at http://www.ms.unimelb.edu.au/∼iwan/polygons/series/2-convex-anisotropic.txt):

−4A
(c)
2

(1 − x)3x2(1 − y)3y2�7/2

− B
(c)
2

(1 − x)7x2(1 − y)7y2((1 − x)2 − y)3((1 − y)2 − x)3(1 − x − y)�4
,

(31)

where

A
(c)
2 = (1 − x)11x4 − 3(1 − x)9x4(5 − 2x + x2)y + (1 − x)7x2(4 − 12x + 103x2

− 79x3 + 31x4 − 11x5 + 3x6)y2 − (1 − x)5x2(40 − 124x + 455x2 − 533x3

+ 264x4 − 69x5 − 21x6 − 3x7 + x8)y3 + (1 − x)3(1 − 12x + 232x2 − 742x3

+ 1696x4 − 2297x5 + 1626x6 − 539x7 + 133x8 + 3x9 − 56x10 + 3x11)y4

+ (1 − x)2(−11 + 119x − 943x2 + 2443x3 − 4014x4 + 4513x5 − 3054x6

+ 867x7 − 58x8 + 221x9 − 137x10 − 11x11 + x12)y5 + (1 − x)(55 − 542x

+ 2765x2 − 6154x3 + 8193x4 − 7901x5 + 5521x6 − 2140x7 − 284x8

+ 430x9 + 19x10 − 81x11 + 7x12)y6 + (−165 + 1503x − 5996x2 + 11 929x3

− 14 004x4 + 11 488x5 − 7661x6 + 4474x7 − 1456x8 − 506x9 + 504x10

−160x11 + 18x12)y7 + (330 − 2502x + 7381x2 − 10 693x3 + 8925x4

− 4846x5 + 1856x6 − 1456x7 + 1364x8 − 328x9 + 103x10 − 22x11)y8

+ (−462 + 2898x − 6353x2 + 6348x3 − 3639x4 + 1204x5 + 714x6 − 506x7

− 328x8 − 32x9 + 10x10)y9 + (462 − 2394x + 3925x2 − 2349x3 + 873x4

− 637x5 − 411x6 + 504x7 + 103x8 + 10x9)y10 + (−330 + 1422x − 1797x2
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+ 434x3 + 47x4 + 484x5 − 100x6 − 160x7 − 22x8)y11 + (165 − 603x

+ 632x2 − 4x3 − 180x4 − 114x5 + 88x6 + 18x7)y12 − (1 − x)2(55 − 67x

− 18x2 + 27x3 + 7x4)y13 − (1 − x)3(−11 + x2)y14 − (1 − x)3y15

and

B
(c)
2 = 4(1 − x)26x4 − 4(1 − x)24x4(30 − 20x + 7x2)y

+ 4(1 − x)22x2(4 − 12x + 433x2 − 580x3 + 368x4 − 128x5 + 21x6)y2

− 4(1 − x)20x2(100 − 360x + 4214x2 − 8192x3 + 7616x4 − 4297x5

+1528x6 − 350x7 + 35x8)y3 + 4(1 − x)18(1 − 12x + 1252x2 − 5226x3

+ 32 426x4 − 76 437x5 + 93 156x6 − 70 591x7 + 36 061x8 − 12 917x9

+ 3217x10 − 532x11 + 35x12)y4 − (1 − x)16(104 − 1296x + 429 36x2

− 198 752x3 + 859 020x4 − 2164 230x5 + 3180 634x6 − 3007 804x7

+ 1964 426x8 − 927 123x9 + 322 834x10 − 83 390x11 + 15 842x12

− 1961x13 + 84x14)y5 + (1 − x)14(1300 − 168 68x + 289 112x2 − 1412 308x3

+ 5065 708x4 − 126 649 38x5 + 209 078 14x6 − 234 117 54x7 + 185 404 32x8

− 107 672 04x9 + 4716 295x10 − 1577 652x11 + 403 402x12 − 793 58x13

+ 120 73x14 − 1114x15 + 28x16)y6 − (1 − x)12(104 00 − 140 832x

+ 1632 176x2 − 8077 604x3 + 267 147 52x4 − 647 717 16x5 + 113 604 188x6

− 143 655 868x7 + 132 836 186x8 − 915 955 22x9 + 481 020 42x10

− 196 416 26x11 + 6301 753x12 − 1574 826x13 + 304 364x14 − 474 86x15

+ 6143x16 − 400x17 + 4x18)y7 − (1 − x)10(−598 00 + 846 768x

− 7892 920x2 + 387 808 72x3 − 125 239 164x4 + 297 723 354x5

−537 008 734x6 + 736 108 516x7 − 767 512 896x8 + 611 776 002x9

− 375 779 397x10 + 180 183 183x11 − 687 576 20x12 + 212 252 17x13

− 5236 463x14 + 983 039x15 − 136 742x16 + 165 79x17 − 1952x18 + 78x19)y8

+ (1 − x)8(−263 120 + 3902 272x − 326 928 80x2 + 159 495 728x3

−518 222 904x4 + 123 5851 899x5 − 227 3834 564x6 + 328 6427 610x7

− 374 4105 010x8 + 336 0169 186x9 − 237 2247 082x10 + 131 6981 454x11

− 578 123 374x12 + 204 616 292x13 − 603 566 81x14 + 150 257 53x15

− 2968 864x16 + 408 498x17 − 361 91x18 + 3653x19 − 450x20 + 7x21)y9

+ (1 − x)6(920 920 − 143 238 48x + 115 445 704x2 − 565 821 908x3

+ 188 1114 592x4 − 459 5055 622x5 + 868 9038 821x6 − 130 968 036 62x7

+ 159 357 862 06x8 − 156 976 204 74x9 + 124 853 324 31x10

− 796 5917 640x11 + 404 0636 749x12 − 161 9517 767x13 + 518 745 262x14

− 140 030 433x15 + 346 013 74x16 − 7726 101x17 + 1290 999x18

− 115 181x19 + 1171x20 − 68x21 + 43x22)y10 + (1 − x)4(−2631 200

+ 429 654 72x − 346 781 248x2 + 173 2729 172x3 − 596 0460 908x4

+ 151 337 868 78x5 − 297 687 769 66x6 + 468 719 627 02x7 − 602 578 322 95x8

+ 638 713 761 60x9 − 559 501 607 50x10 + 403 464 974 76x11

− 237 005 895 23x12 + 111 393 641 97x13 − 408 7427 426x14
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+ 114 5559 467x15 − 251 575 315x16 + 526 511 69x17 − 134 786 67x18

+ 3310 337x19 − 518 486x20 + 329 36x21 + 909x22 + 2x23 + 3x24)y11

− (1 − x)3(−6249 100 + 100 966 228x − 786 008 036x2 + 379 0621 220x3

−126 341 940 04x4 + 311 204 687 74x5 − 593 332 837 79x6 + 904 814 266 44x7

− 112 836 337 344x8 + 116 619 494 723x9 − 100 526 269 572x10

+ 722 572 506 33x11 − 429 351 966 78x12 + 206 469 260 51x13

− 771 7297 655x14 + 208 1066 620x15 − 344 551 302x16 + 197 089 82x17

− 190 245x18 + 2604 586x19 − 1089 925x20 + 167 990x21 − 5325x22

− 819x23 + 5x24)y12 − (1 − x)2(124 982 00 − 200 432 672x

+ 152 3814 896x2 − 717 3568 104x3 + 233 942 020 64x4 − 564 323 973 85x5

+ 105 258 925 336x6 − 156 756 419 659x7 + 190 737 577 732x8

−192 647 570 536x9 + 163 201 860 685x10 − 116 641 434 399x11

+ 702 658 080 73x12 − 351 897 817 55x13 + 141 298 586 43x14

− 420 6300 270x15 + 752 961 328x16 + 2762 280x17 − 410 772 10x18

+ 8781 488x19 + 172 960x20 − 372 435x21 + 592 06x22 − 2116x23

−89x24 + 11x25)y13 − (1 − x)(−212 469 40 + 339 297 288x

− 254 3202 516x2 + 117 962 571 60x3 − 379 562 430 60x4 + 903 896 335 88x5

− 166 278 246 916x6 + 243 693 863 948x7 − 291 099 521 233x8

+ 288 163 147 560x9 − 239 402 103 854x10 + 168 782 468 152x11

− 101 938 448 323x12 + 528 367 819 03x13 − 230 898 131 75x14

+ 807 6150 924x15 − 200 6509 792x16 + 229 306 444x17 + 529 413 97x18

− 294 437 71x19 + 5233 574x20 − 137 308x21 − 960 84x22 + 130 23x23

− 102x24 + 33x25)y14 + (−309 046 40 + 493 047 872x − 367 1274 848x2

+ 169 097 657 68x3 − 540 768 691 68x4 + 128 034 624 944x5

− 233 957 204 524x6 + 339 860 131 708x7 − 401 161 475 162x8

+ 390 960 587 591x9 − 318 456 383 150x10 + 219 480 309 921x11

− 130 108 934 416x12 + 676 557 993 11x13 − 311 659 640 99x14

+ 124 558 458 78x15 − 404 272 8520x16 + 929 084 638x17 − 931 950 98x18

− 240 597 94x19 + 117 052 93x20 − 1983 652x21 + 865 82x22 + 235 47x23

− 3151x24 − 68x25 + 5x26)y15 + (386 308 00 − 579 105 408x

+ 401 898 8224x2 − 171 533 827 04x3 + 505 798 918 52x4

− 109 880 934 764x5 + 183 275 392 200x6 − 241 692 656 260x7

+ 257 400 864 147x8 − 224 539 648 706x9 + 161 936 707 748x10

− 976 164 240 50x11 + 503 865 701 78x12 − 232 954 205 11x13

+ 100 826 607 16x14 − 404 272 8520x15 + 138 192 6138x16 − 352 763 968x17

+ 515 566 03x18 + 1631 397x19 − 2559 687x20 + 547 928x21 − 544 39x22

− 611x23 + 432x24 − 31x25)y16 + (−416 024 00 + 585 761 792x

− 379 108 9760x2 + 150 025 799 68x3 − 407 935 865 84x4 + 812 629 205 02x5

− 123 537 868 000x6 + 147 559 428 776x7 − 141 331 365 760x8
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+ 109 736 530 568x9 − 691 932 007 19x10 + 354 213 831 32x11

− 150 138 604 03x12 + 570 946 0646x13 − 223 581 6236x14 + 929 084 638x15

−352 763 968x16 + 103 409 188x17 − 197 578 56x18 + 1570 918x19

+ 189 358x20 − 719 08x21 + 118 83x22 − 268x23 + 77x24)y17 + (386 308 00

− 510 758 608x + 308 459 8320x2 − 113 242 327 12x3 + 283 950 372 20x4

− 518 269 628 92x5 + 716 820 987 98x6 − 773 539 556 08x7

+ 664 291 256 67x8 − 457 069 077 43x9 + 249 061 991 56x10

−104 032 005 27x11 + 317 403 7717x12 − 706 359 558x13 + 176 365 047x14

− 931 950 98x15 + 515 566 03x16 − 197 578 56x17 + 4723 092x18

−605 060x19 + 495 69x20 − 3395x21 − 1253x22 − 143x23)y18

+ (−309 046 40 + 383 692 992x − 216 379 2656x2 + 737 434 1864x3

− 170 536 875 20x4 + 284 977 760 84x5 − 357 903 271 36x6

+ 348 001 160 28x7 − 267 292 247 36x8 + 162 809 889 77x9 − 764 822 6004x10

+ 252 499 2746x11 − 406 853 569x12 − 936 981 88x13 + 823 851 68x14

− 240 597 94x15 + 1631 397x16 + 1570 918x17 − 605 060x18 + 665 54x19

− 4454x20 + 1819x21 + 202x22)y19 + (212 469 40 − 247 772 008x

+ 130 597 1612x2 − 413 555 6872x3 + 882 393 6024x4 − 134 926 909 28x5

+ 153 568 708 74x6 − 134 164 751 66x7 + 919 690 7145x8 − 497 822 2336x9

+ 205 252 7732x10 − 556 811 827x11 + 291 834 00x12 + 584 672 26x13

− 346 773 45x14 + 117 052 93x15 − 2559 687x16 + 189 358x17 + 495 69x18

− 4454x19 − 1368x20 − 110x21)y20 + (−12 498 200 + 136 980 272x

− 675 634 696x2 + 199 045 3776x3 − 3921 712 444x4 + 5 486 790 816x5

− 564 951 3210x6 + 442 108 9360x7 − 269 588 6222x8 + 130 517 4655x9

− 491 084 981x10 + 128 534 739x11 − 114 417 68x12 − 8063 133x13

+ 5370 882x14 − 1983 652x15 + 547 928x16 − 719 08x17 − 3395x18 + 1819x19

− 110x20)y21 + (6249 100 − 644 330 28x + 297 851 620x2

−817 733 112x3 + 148 986 0872x4 − 190 840 8554x5 + 177 557 2130x6

− 124 044 2976x7 + 667 928 313x8 − 289 317 379x9 + 102 644 601x10

− 299 617 66x11 + 6383 656x12 − 977 036x13 − 412 24x14 + 865 82x15

− 544 39x16 + 118 83x17 − 1253x18 + 202x19)y22 + (−2631 200

+ 255 590 72x − 110 940 720x2 + 284 446 548x3 − 480 234 432x4

+ 564 112 724x5 − 474 248 936x6 + 294 904 852x7 − 138 225 516x8

+ 525 224 11x9 − 172 245 08x10 + 5578 263x11 − 1609 051x12

+ 492 963x13 − 109 107x14 + 235 47x15 − 611x16 − 268x17 − 143x18)y23

+ (920 920 − 8444 128x + 344 921 44x2 − 827 993 36x3 + 129 893 340x4

− 140 307 634x5 + 106 798 702x6 − 590 958 90x7 + 236 392 99x8

−7486 656x9 + 2001 655x10 − 644 781x11 + 181 503x12 − 633 49x13

+ 131 25x14 − 3151x15 + 432x16 + 77x17)y24 + (−263 120 + 2283 072x

− 8798 288x2 + 198 290 08x3 − 289 954 48x4 + 289 067 19x5 − 200 126 00x6
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+ 9913 898x7 − 3347 134x8 + 826 000x9 − 124 087x10 + 293 00x11

− 2853x12 + 1927x13 − 135x14 − 68x15 − 31x16)y25 + (598 00 − 492 568x

+ 1795 744x2 − 3809 804x3 + 5207 920x4 − 4809 154x5 + 3046 581x6

− 1369 614x7 + 399 732x8 − 78 407x9 + 2224x10 + 919x11 − 834x12 + 111x13

+ 33x14 + 5x15)y26 + (−104 00 + 816 32x − 282 336x2 + 565 028x3

− 723 116x4 + 619 222x5 − 359 946x6 + 148 482x7 − 396 09x8 + 7449x9

− 326x10 − 10x11 + 5x12 − 11x13)y27 + (1300 − 9768x + 321 40x2

− 607 12x3 + 725 92x4 − 572 98x5 + 302 17x6 − 112 07x7 + 2732x8

− 506x9 + 43x10 + 3x11)y28 + (−104 + 752x − 2360x2 + 4200x3 − 4648x4

+ 3305x5 − 1506x6 + 448x7 − 78x8 + 7x9)y29 + 4(1 − x)7y30.

7. Summary and outlook

Following Lin’s approach to enumerating 1-convex polygons, one can factorize almost-convex
polygons by extending lines along the base of all indents. Then, using a ‘divide and conquer’
approach, it is possible to then enumerate the various sub-classes.

By looking at the form of the various factors, it is possible to guess what the form of
the resulting generating functions will be. One can then obtain the generating functions by
directly enumerating the series to a sufficiently high order and then solving the set of linear
equations corresponding to the presumed form.

We presented some techniques that are invaluable in enumerating the factors exactly.
The most important technique is that of ‘wrapping’, which allows the generation of quite
complex objects out of simply enumerable components. It is easily implemented when
using an inclusion–exclusion approach to enumerating unimodal factors, which made it
essential in enumerating 2-convex polygons. These techniques have allowed us to reduce
the enumeration of 1-convex polygons, as well as many sub-classes of 2-convex polygons, to
a single, combinatorially interpretable expression.

Going forward, it is not realistic to factorize almost-convex polygons for high concavity
indices as we have done here, as there will be an exponential growth in the number of cases
to evaluate. It would be more sensible to restrict the size of each indentation first, and then
generalize these cases. Eventually, defining operators that can add more and more complex
indentations in the side of convex polygons and looking at the effect on the asymptotic growth
of their number seems to be the most appropriate path to understand how convex polygons
become general SAPs.
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